从前面Android系统进程Zygote启动过程的源代码分析一文可以知道,System进程是由Zygote进程启动的,并且是以Java层的SystemServer类的静态成员函数main为入口函数的。因此,接下来我们就从SystemServer类的静态成员函数main开始,分析SurfaceFlinger服务的启动过程,如图1所示。
图1 SurfaceFlinger服务的启动过程
SurfaceFlinger服务的启动过程可以划分为8个步骤,接下来我们就详细分析每一个步骤。
Step 1. SystemServer.main
- public class SystemServer
- {
- ......
- native public static void init1(String[] args);
- public static void main(String[] args) {
- ......
- System.loadLibrary("android_servers");
- init1(args);
- }
- ......
- }
SystemServer类的静态成员函数main首先将android_servers库加载到System进程中来,接着调用另外一个静态成员函数init1来启动那些使用C++语言来实现的系统服务。
SystemServer类的静态成员函数init1是一个JNI方法,它是由C++层的函数android_server_SystemServer_init1来实现的,接下来我们就继续分析它的实现。
Step 2. SystemServer.init1
- static void android_server_SystemServer_init1(JNIEnv* env, jobject clazz)
- {
- system_init();
- }
SystemServer类的静态成员函数init1调用另外一个函数system_init来启动那些使用C++语言来实现的系统服务,它的实现在文件frameworks/base/cmds/system_server/library/system_init.cpp中,如下所示:
- extern "C" status_t system_init()
- {
- LOGI("Entered system_init()");
- sp<ProcessState> proc(ProcessState::self());
- ......
- char propBuf[PROPERTY_VALUE_MAX];
- property_get("system_init.startsurfaceflinger", propBuf, "1");
- if (strcmp(propBuf, "1") == 0) {
- // Start the SurfaceFlinger
- SurfaceFlinger::instantiate();
- }
- ......
- if (proc->supportsProcesses()) {
- LOGI("System server: entering thread pool.\n");
- ProcessState::self()->startThreadPool();
- IPCThreadState::self()->joinThreadPool();
- LOGI("System server: exiting thread pool.\n");
- }
- return NO_ERROR;
- }
函数接下来就检查系统中是否存在一个名称为“system_init.startsurfaceflinger”的属性。如果存在的话,就将它的值获取回来,并且保存在缓冲区proBuf中。如果不存在的话,那么函数property_get就会将缓冲区proBuf的值设置为“1”。当缓冲区proBuf的值等于“1”的时候,就表示需要在System进程中将SurfaceFlinger服务启动起来,这是通过调用SurfaceFlinger类的静态成员函数instantiate来实现的。
函数最后检查系统是否支持Binder进程间通信机制。如果支持的话,那么接下来就会调用当前进程中的ProcessState单例的成员函数startThreadPool来启动一个Binder线程池,并且调用当前线程中的IPCThreadState单例来将当前线程加入到前面所启动的Binder线程池中去。从前面Android系统进程Zygote启动过程的源代码分析和Android应用程序进程启动过程的源代码分析两篇文章可以知道,System进程前面在初始化运行时库的过程中,已经调用过当前进程中的ProcessState单例的成员函数startThreadPool来启动Binder线程池了,因此,这里其实只是将当前线程加入到这个Binder线程池中去。有了这个Binder线程池之后,SurfaceFlinger服务在启动完成之后,就可以为系统中的其他组件或者进程提供服务了。
假设系统存在一个名称为“system_init.startsurfaceflinger”的属性,并且它的值等于“1”,接下来我们就继续分析SurfaceFlinger类的静态成员函数instantiate的实现,以便可以了解SurfaceFlinger服务的启动过程。由于SurfaceFlinger类的静态成员函数instantiate是从父类BinderService继承下来的,因此,接下来我们要分析的实际上是BinderService类的静态成员函数instantiate的实现。
Step 3. BinderService.instantiate
- template<typename SERVICE>
- class BinderService
- {
- public:
- ......
- static void instantiate() { publish(); }
- ......
- };
BinderService类的静态成员函数instantiate的实现很简单,它只是调用BinderService类的另外一个静态成员函数publish来继续执行启动SurfaceFlinger服务的操作。
Step 4. BinderService.publish
- template<typename SERVICE>
- class BinderService
- {
- public:
- static status_t publish() {
- sp<IServiceManager> sm(defaultServiceManager());
- return sm->addService(String16(SERVICE::getServiceName()), new SERVICE());
- }
- ......
- };
BinderService是一个模板类,它有一个模板参数SERVICE。当BinderService类被SurfaceFlinger类继承时,模板参数SERVICE的值就等于SurfaceFlinger。因此,BinderService类的静态成员函数publish所执行的操作就是创建一个SurfaceFlinger实例,用来作为系统的SurfaceFlinger服务,并且将这个服务注册到Service Manager中去,这样系统中的其它组件或者进程就可以通过Service Manager来获得SurfaceFlinger服务的Binder代理对象,进而使用它所提供的服务。Binder进程间通信机制中的服务对象的注册过程可以参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文。
接下来,我们就继续分析SurfaceFlinger服务的创建过程。
Step 5. new SurfaceFlinger
- SurfaceFlinger::SurfaceFlinger()
- : BnSurfaceComposer(), Thread(false),
- ......
- {
- init();
- }
这个函数定义在文件frameworks/base/services/surfaceflinger/SurfaceFlinger.cpp中。
从前面Android系统Surface机制的SurfaceFlinger服务简要介绍和学习计划一文可以知道,SurfaceFlinger类继承了BnSurfaceComposer类,而后者是一个实现了ISurfaceComposer接口的Binder本地对象类。此外,SurfaceFlinger类还继承了Thread类,后者是用来创建一个线程的,这个线程就是我们在Android系统Surface机制的SurfaceFlinger服务简要介绍和学习计划一文中提到的UI渲染线程,它的线程执行体函数为SurfaceFlinger类的成员函数threadLoop。后面在分析SurfaceFlinger服务渲染UI的过程时,我们再分析SurfaceFlinger类的成员函数threadLoop的实现。注意,在初始化SurfaceFlinger的父类Thread时,传进去的参数为false,表示先不要将SurfaceFlinger服务的UI渲染线程启动起来,等到后面再启动。
SurfaceFlinger服务在创建的过程中,会调用SurfaceFlinger类的成员函数init来执行初始化的操作,接下来,我们就继续分析它的实现。
Step 6. SurfaceFlinger.init
- void SurfaceFlinger::init()
- {
- LOGI("SurfaceFlinger is starting");
- // debugging stuff...
- char value[PROPERTY_VALUE_MAX];
- property_get("debug.sf.showupdates", value, "0");
- mDebugRegion = atoi(value);
- property_get("debug.sf.showbackground", value, "0");
- mDebugBackground = atoi(value);
- LOGI_IF(mDebugRegion, "showupdates enabled");
- LOGI_IF(mDebugBackground, "showbackground enabled");
- }
SurfaceFlinger类的成员函数init的实现很简单,它分别获得系统中两个名称为“debug.sf.showupdates”和“debug.sf.showbackground”的属性的值,并且分别保存在SurfaceFlinger类的成员变量mDebugRegion和mDebugBackground中。这两个成员变量是与调试相关的,我们不关心。
这一步执行完成之后,返回到前面的Step 4中,即BinderService类的静态成员函数publish中,这时候在前面的Step 5中所创建的一个SurfaceFlinger实例就会被注册到Service Manager中,这是通过调用Service Manager的Binder代理对象的成员函数addService来实现的。由于Service Manager的Binder代理对象的成员函数addService的第二个参数是一个类型为IBinder的强指针引用。从前面Android系统的智能指针(轻量级指针、强指针和弱指针)的实现原理分析一文可以知道,当一个对象第一次被一个强指针引用时,那么这个对象的成员函数onFirstRef就会被调用。因此,接下来前面所创建的SurfaceFlinger实例的成员函数onFirstRef就会被调用,以便可以继续执行初始化操作。
Step 7. SurfaceFlinger.onFirstRef
- void SurfaceFlinger::onFirstRef()
- {
- run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
- // Wait for the main thread to be done with its initialization
- mReadyToRunBarrier.wait();
- }<span style="font-family: Arial, Helvetica, sans-serif;"><span style="white-space: normal;">
- </span></span>
这个函数定义在文件frameworks/base/services/surfaceflinger/SurfaceFlinger.cpp中。
函数首先调用从父类继承下来的成员函数run来启动一个名秒为“SurfaceFlinger”的线程,用来执行UI渲染操作。这就是前面我们所说的UI渲染线程了。这个UI渲染线程创建完成之后,首先会调用SurfaceFlinger类的成员函数readyToRun来执行一些初始化操作,接着再循环调用SurfaceFlinger类的成员函数threadLoop来作为线程的执行体。
mReadyToRunBarrier是SurfaceFlinger类的一个成员变量,它的类型是Barrier,用来描述一个屏障,是通过条件变量来实现的。我们可以把它看作是一个线程同步工具,即阻塞当前线程,直到SurfaceFlinger服务的UI渲染线程执行完成初始化操作为止。
接下来,我们就继续分析SurfaceFlinger类的成员函数readyToRun的实现,以便可以了解SurfaceFlinger服务的UI渲染线程的初始化过程。
Step 8. SurfaceFlinger.oreadyToRun
这个函数定义在文件frameworks/base/services/surfaceflinger/SurfaceFlinger.cpp文件中,用来初始化SurfaceFlinger服务的UI渲染线程,我们分段来阅读:
- status_t SurfaceFlinger::readyToRun()
- {
- LOGI( "SurfaceFlinger's main thread ready to run. "
- "Initializing graphics H/W...");
- // we only support one display currently
- int dpy = 0;
- {
- // initialize the main display
- GraphicPlane& plane(graphicPlane(dpy));
- DisplayHardware* const hw = new DisplayHardware(this, dpy);
- plane.setDisplayHardware(hw);
- }
我们接着往下阅读代码:
- // create the shared control-block
- mServerHeap = new MemoryHeapBase(4096,
- MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
- LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
- mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
- LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
- new(mServerCblk) surface_flinger_cblk_t;
这块匿名共享内存用来保存设备显示屏的属性信息,例如,宽度、高度、密度和每秒多少帧等信息,后面我们就会看到这块匿名共享内存的初始化过程。为什么会使用匿名共享内存来保存设备显示屏的属性信息呢?这是为了方便将这些信息传递给系统中的其它进程访问的。系统中的其它进程可以通过调用调用SurfaceFlinger服务的代理对象的成员函数getCblk来获得这块匿名共享内存的内容。
我们再接着往下阅读代码:
- // initialize primary screen
- // (other display should be initialized in the same manner, but
- // asynchronously, as they could come and go. None of this is supported
- // yet).
- const GraphicPlane& plane(graphicPlane(dpy));
- const DisplayHardware& hw = plane.displayHardware();
- const uint32_t w = hw.getWidth();
- const uint32_t h = hw.getHeight();
- const uint32_t f = hw.getFormat();
- hw.makeCurrent();
我们继续往下阅读代码:
- // initialize the shared control block
- mServerCblk->connected |= 1<<dpy;
- display_cblk_t* dcblk = mServerCblk->displays + dpy;
- memset(dcblk, 0, sizeof(display_cblk_t));
- dcblk->w = plane.getWidth();
- dcblk->h = plane.getHeight();
- dcblk->format = f;
- dcblk->orientation = ISurfaceComposer::eOrientationDefault;
- dcblk->xdpi = hw.getDpiX();
- dcblk->ydpi = hw.getDpiY();
- dcblk->fps = hw.getRefreshRate();
- dcblk->density = hw.getDensity();
我们再继续往下阅读代码:
- // Initialize OpenGL|ES
- glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
- glPixelStorei(GL_PACK_ALIGNMENT, 4);
- glEnableClientState(GL_VERTEX_ARRAY);
- glEnable(GL_SCISSOR_TEST);
- glShadeModel(GL_FLAT);
- glDisable(GL_DITHER);
- glDisable(GL_CULL_FACE);
- const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
- const uint16_t g1 = pack565(0x17,0x2f,0x17);
- const uint16_t textureData[4] = { g0, g1, g1, g0 };
- glGenTextures(1, &mWormholeTexName);
- glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
- glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
- glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
- glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
- glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
- glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
- GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData);
- glViewport(0, 0, w, h);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- glOrthof(0, w, h, 0, 0, 1);
我们再继续往下阅读最后一段代码:
- LayerDim::initDimmer(this, w, h);
- mReadyToRunBarrier.open();
- /*
- * We're now ready to accept clients...
- */
- // start boot animation
- property_set("ctl.start", "bootanim");
- return NO_ERROR;
- }
第一件事情是调用LayerDim类的静态成员函数initDimmer来初始化LayerDim类。LayerDim类是用来描述一个具有颜色渐变功能的Surface的,这种类型的Surface与普通的Surface不一样,前者是在后者的基础上创建和渲染的。
第二件事情是调用SurfaceFlinger类的成员变量mReadyToRunBarrier所描述的一个屏障的成员函数open来告诉System进程的主线程,即在前面的Step 7中正在等待的线程,SurfaceFlinger服务的UI渲染线程已经创建并且初始化完成了,这时候System进程的主线程就可以继续向前执行其它操作了。
第三件事情是调用函数property_set来设置系统中名称为“ctl.start”的属性,即将它的值设置为“bootanim”。从前面Android系统的开机画面显示过程分析一文可以知道,ctl.start是Android系统的一个控制属性,当它的值等于““bootanim”的时候,就表示要启动Android系统的开机动画。从这里就可以看出,当我们看到Android系统的开机动画时,就说明Android系统的SurfaceFlinger服务已经启动起来了。
至此,我们就分析完成SurfaceFlinger服务的启动过程中了。在分析过程中,有两个比较重要的知识点:第一个知识点是系统主显示屏的创建和初始化过程,第二个知识点是UI渲染线程的执行过程。在接下来的第一篇文章中,我们将详细分析第一个知识点。在分析第一个知识点的过程中,会涉及到SurfaceFlinger服务的控制台事件监控线程的创建过程,因此,结合Step 2提到的Binder线程,以及Step 7提到的UI渲染线程,我们将在接下来的第二篇文章中,综合描述SurfaceFlinger服务的线程协作模型。有了前面的基础知识之后,在接下来的第三篇文章中,我们就将详细分析第二个知识点。敬请关注!
本文转自:http://blog.csdn.net/luoshengyang/article/details/8022957
- 相关文章
- Android系统Surface机制的SurfaceFlinger服务简要介绍和 (3人浏览)
- Android应用程序请求SurfaceFlinger服务创建Surface的过 (1人浏览)
- Android应用程序请求SurfaceFlinger服务创建Surface的过 (0人浏览)
- Android应用程序与SurfaceFlinger服务之间的共享UI元数据(S (1人浏览)
- Android应用程序与SurfaceFlinger服务的连接过程分析 (0人浏览)
- Android应用程序与SurfaceFlinger服务的关系概述和学习计划 (0人浏览)
- Android开发中利用ndk-stack解决ndk开发中动态库.so崩溃的问题 (43人浏览)